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ABSTRACT 

This  paper  presents  the  complete  analytical  solutions of several  

fundamental  problems  in  orbital  corrections.  The  initial  orbit  is  repre- 

sented by a given  point  in  the  phase  space  while  the  final  orbit is con- 

strained  to  stay  in a given  curve  which  can  be  bounded,  unbounded,  or 

is  composed of a finite  number of segments of different  curves.  The 

inclusion of atmospheric  maneuver  as  part  of the  optimum  process  is 

discussed,  and  its  analytical  treatment  can  be  carried out by modifying 

the  final  state  to  include  the  set of orbits  having  their  perigees at the 

boundary of the  atmosphere. 

The  selection of the  apogee  and  perigee  distances  as  state  vari- 

ables  gives a symmetric  form  to  the  problem  and  results  in a linear 

differential  equation of the  f irst   order  for  the  ratio of the  adjoint  vari- 

ables.  The  introduction of a curve of comparison,  called  the  separatrix, 

facilitates  the  discussion of the  existence of a corner on an  optimal tra- 

jectory. 

V 



1. INTRODUCTION 

Consider a space  vehicle  initially  in  an  orbit ( Eo ) around a 

spherical  planet  with  center of attraction at 0 .  The  initial  orbit is defined 

by i ts   semi  major-axis  a. and  its  eccentricity  eo . It is pro- 

posed  to  bring  the  vehicle, by a se r ies  of orbital  maneuvers,  into a final 

orbit  such  that  its  elements,  denoted by the  subscript 1 , satisfy a 

relation of the  form 

We seek  to  minimize  the  total  characteristic  velocity  for  the  ma- 

neuver.  Since f o r  a high-thrust  propulsion  system  the  characteristic 

velocity  provides a direct   measure of the  fuel  consumption,  the  optimal 

trajectory  considered  in  this  paper  yields  the  minimum  fuel  expenditure. 

We assume  the  planet  is  surrounded by a spherical  atmosphere 

with  center  at 0 and  radius R (Fig.  1). In  the  search of the  absolute 

minimum  fuel  consumption we further  assume  that  the  duration of the 

maneuver  is  unlimited,  and  the  thrust  provided by the  rockets on board 

the  space  vehicle  is  not  bounded,  that  is it can  produce  impulsive  changes 

in  the  velocity.  For  the  case  where  the  thrust  magnitude  is  limited, it 

can  be  made  impulsive by the  process of fractioning.  Thus  the  problem 

i s  of the  class of time-free,  impulsive,  orbital  transfers. 



2. FORMULATION OF THE PROBLEM 

The  problem is formulated  as  an  optimal  control  problem. At the 

t ime t , the  state of the  vehicle  is  characterized by the  row  vector 

(Fig. 1) 

where a is  the  apogee  distance,  the  perigee  distance, w the 

longitude of the  perigee,  and u the  characteristic  velocity.  The 

first three  coordinates  describe  the  osculating  ellipse  along  which  the 

vehicle  is  moving  at  the  time t , that  is,  the  Keplerian  orbit  which 

the  vehicle would  follow  should  the  engine cease  to  operate  at   the  t ime 

t . The parameter  u i s  a measure  of the  latent  velocity  expended 

since  the  initial  time  and  is  defined by 

t 

u =  , , I d +  b o  

where T is  the  instantaneous  magnitude of the  thrust  and m the 

m a s s  of the  vehicle.  The  control  is  represented by the  row  vector 



where v is the  true  anomaly  and + the  thrust  direction  with 

respect  to  the  local  horizon. 

The  equations of motion  are  derived  from  the  classical  equations 

of variations  in  celestial  mechanics  (Ref.  1).  For a time-free  problem, 

u is  a  convenient  independent  variable. W e  have 

where 
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respectively  denote  the  semi  minor-axis  and  the  mean  motion  and  where 

= G M  is the  gravitational  constant.  The  end  conditions  are 

u O  = o , a =  ao=ao(I+eJ ,IJ = po=ao(l-e,,) , u,= o 

u = u I ,  a =  a 1  , p =  P I ,  = q  

and a ,  P I  are  such  that  they  satisfy a specified  relation 

-t 

The  problem  is  to  find,  at  each  instant u , the  control 7) 

such  that  the  characteristic  velocity u1 i s  a minimum.  Using  the 

maximum  principle, we  define an  adjoint  vector = (4, X,  X,) 
4 

such  that  its  components  satisfy  the  adjoint  equations  (Ref. 2 )  

where  the  Hamiltonian H i s  given by 

H = x  + x  f + x  f + x  f 
0 I 1 2 2  3 3  

4 



with 

The  optimal  trajectory is obtained by integrating  the  systems of 

equations (5)  and ( 9 ) ,  using  the  end  conditions (7), (8) and ( l l ) ,  with  the 

control  parameters v and b, selected  such  that,  at  each  instant, 

H is  an  absolute  maximum. 

3 .  ANALYSIS 

3 .  1 Optimal  Trajectories 

w is  an  ignorable  coordinate.  Hence if the  final  orientation of 

the  orbit  is  not  specified, x = 0 and  the  condition of optimality 

is the  maximization of the  reduced  Hamiltonian 

with  respect  to v and b, . 
If the  angles v and $ a r e  not  constrained,  as  they  will  be 

in  the  cases  considered  in  this  paper,  then it is  easy  to  verify  that  the 

stationary  values of H correspond  to v = 0 o r  v = 7T , and 

4 = 0 or  b, = . Therefore,  along  an  extrema1 

- 
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Along an  extremal,  the  Hamiltonian (1 0) reduces  to 

and  by  elimination of u in (5) the  equation of the  optimal  trajectory 

can  be  written  as 

when € = -  I Y (r = constant 
I 

when e l =  I 
’ B = constant 

h t h e  ( a , p ) space,  with a ?f , the  optimal  trajectories 

are   the  l ines   paral le l   to   the  axes   (Fig.  2). The  impulses  are  always 

applied  tangentially  at  the  apses. 

3 . 2  Switching  Curve 

Along an  optimal  trajectory  there  may  exist a corner S (or  

6 
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F i g .  I .  T h e   O s c u l a t i n g   O r b i t  . 

PA /q 
E (  = -  I 

E 2 = -  I € 2 =  I 

El = -  I 

El = I 

E 2 =  - I  E 2 =  I 
El  = I 

” 
0’ 

- - 
A A  t y p e  -Q 0 

PA P ,I 
D O  t y p e  a 

€ , =  I E ,  = I 
€2 =- I 

= - :  1 El = - I  

E 2 =  I 
E2 =- 

(3 LI L- 

A D  t y p e  -Q 0 A D  t y p e  Q 

F ig .  2 .  Di f ferent   Types  of   Swi tching . 
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switching)  at  which  the  trajectory  changes  direction.  The  direction of 

switching is of four  possible  types  as  shown  in  Fig. 2. Using  the  letter 

A to designate  an  accelerative  impulse  and D for a decelerative 

impulse we have 

First   type AA switching  starting  from  the  perigee. On the  left of the 

corner S , e l  = I , c 2  ,= I . On the  right of the  corner,  f 
I 

By writing  that  the  Hamiltonian  (13)  is  continuous  across a corner we 

have  for  the  value of \I/ at  the  point S 

where c2 and p are  the  coordinates of the  point S . 
Second  type DD switching  starting  from  the  apogee.  This  is  the  inverse 

operation of the  previous one. On the  left of the  corner S we have 

€ , =  I ,  f = -  I . On the  right we  have , =- I , =- I . 
2 

In this  case  the  value of \I/ at  the  point S is   also  given by (16).  

Third  type AD switching  starting  from  the  perigee. On the  left of the 

corner ' I - I , = I . On the  right we  have c 1  = - I ,  
2 

€ 2  
- I . The  value of the  ratio \I/ at  the  point S for  this  type 

8 



of switching i s  

Fourth  type A D  switching  starting  from  the  apogee.  This is the  inverse 

operation of the  preceding  one. On the  left we have E , =  I , 

€ 2  
=-  I . On the  right we  have = - I , € - I . The 

I 2 -  

value of \I/ at  the  point S is   also  given by (17). 

For  a prescribed  f inal   state  represented by the  equation (8) the 

locus of the  possible  switching  point S i s  a curve  which we shall  refer 

to  as  the  switching.  The  switching  is  obtained by integrating  the  adjoint 

equations (9)  along  the  last  subarc SK (Fig .  3 )  and  using  the  corner 

condition  at  the  point S and  the  transversality  condition  at  the  point K . 
In  the  figure  the  final  state  is  designated by . 
Integration ~ . , "  _ _  a long ,  ( r~ = constant , € 1 = - l  . 

Explicitely we  have 

I=- d X  2 E 7 X 3 .  p ( 2  a + )  
d u  n b  a ( a + p )  

9 



Using as the  new  independent  variable  we  have  the  equation  for 

9 = x , / x ,  

The  general  solution of this  equation is 

where  the  constant of integration C i s   t o  be determined by the  appro- 

priate  end  conditions.  Since  the  last  subarc is along a = constant,  the 

switching is of the  first  or  the  third  type.  For  an AA type,  using  the 

value (16)  for \I/ we have  for  the  constant c , evaluated  at  the 

point S 

where Q and p are  the  coordinates of the  point S . 
For  an AD type of switching  the  value  (17)  for \I/ at the  point 

S is used to calculate  the  constant C . We have 

10 



c =  I 

At the  terminal  point K , the  vector ( 1 , , 1 ) is ortho- 

gonal  to  the  curve 8 ( a,, I ) = 0 by the  transversality  condition. 

The  value of 9 at  the  point K ( Q1 I , p I ) is   then 

Using  this  value to calculate c in  (19) we have 

In the  last  relation, p , can be calculated  in  terms of a by solving 

Finally i f  the  value of C in (23)  is equated  to  the  value of C in 

(20) o r  (21), depending on the  type of switching,  we  obtain a relation 

between  and f which  is  the  equation of the  switching  curve. 

Integration  along = constant , E , = I . 
If the  las t   subarc SK is along a line ,& = constant  the  adjoint 

1 1  



equations  are  integrated  along  this  line,  using a as  independent 

variable. We obtain 

Because of the  syrnmetry of the  state  variables,   this  last   relation  can 

be  easily  obtained by replacing \I/ by I / \E in Eq. (19)  and  inter- 

changing Q and 1 . 
The  switching now is of the  second or the  fourth  type. For a 

DD switching  the  value of the  constant C evaluated  at  the  point S i s  

For   an AJ3 switching 

U 
c =  - 

At the  terminal  point K , by using  the  transversality  condition ( 2 2 )  we 

have  for  the  constant C evaluated  at K ( Q I , 

12 



In the  last  relation, 
a 1  

can  be  evaluated  in  terms of by  solving 

6 ( a , , / %  = 0 

Finally i f  the  value of C in (28) is equated  to  the  value of c in (26) 

or ( 2 7 ) ,  depending on the  type of switching,  we  obtain  the  quation of the 

switching  curve. 

In  the  following,  the  quation of the  switching  curve  is  represented 

S ( Q +  = 0 

In  deriving  the  equation of the  switching we have  assumed  that no con- 

straint  has  been put on the  final  state. If the  final  state  is  constrained 

then  an  optimal  trajectory  may  have a corner  which  is  not on the  switching 

curve. In this  case  the  final  orbit  is  always  at  the  boundary of the  final 

state.  Another  type of corner on an  optimal  trajectory  may  arise  when 

atmospheric  drag  is  used  in  the  optimal  transfer.  This  type of corner 

will  be  discussed  in  section 3 . 4 .  

3 . 3  I The  Separatrix " 

The  application of the  maximum  principle only gives  the  necessary 

conditions  for  optirnality.  Therefore,  for a specified  problem,  even  in 

the  case  where  the  switching  is  real  in  the  space 

13 



it only means  that  i f  the final state  is   not  constrained,  and if  a corner  

exists on an  optimal  trajectory,  this  corner  has  to  be  on  the  switching. 

To avoid  the  difficult  task of proving  the  sufficiency  for  optimality  which 

requires  the  finding of the  conjugate  point we shall  introduce a curve 

called  the  separatrix  which  can  be  used  to  rule out the  existence of the 

corner  in  most  cases.  The separatrix  is   defined  as a curve  which  de- 

limits  the  domain  where  using a transfer  via  parabolic  orbits is more  

economical  than  going  directly  to  the  final  state by applying  an  impulse 

a t  one of the  apses.  Like  the  switching,  the  separatrix  depends on the 

final  state.  The  discussion  is  illustrated  in F ig .  3 .  For  the  initial 

orbit E , the  optimal  trajectory  to  reach  the  final  state  is 

the  trajectory E H , obtained  by  applying a decelerative  impulse 

at  the  apogee of 

where it is   more  economical  to follow  the  line SP to  infinity  rather 

than  using  the  trajectory SK . The  composite  trajectory E SP  , in 

turn,  is  less  economical  than  the  true  optimal E H since E o  i s  on 

the  other  side of the  separatrix. 

E O  . For,  the  possible  corner S is  in  the  domain 

3 . 4  The  Use of Atmospheric D r a g  

For  a transfer  between a point  and a final  set  which  constitutes 

orbits  outside  the  atmospheric  sphere of radius R and  when  the  change 

of orbital  plane is not  involved we must  always  have D a s  

shown  in  Fig. 4. The  proof of the  statement  is  very  simple.  Assume a 

14 
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F i g .  3 .The  Switching and the  Separatrix . 

F i g . 4 . T h e   U s e  o f  Atmospher ic   Brak ing .  
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possible  trajectory is the  curve ABC . Then  the  Hohmann  transfer ABCC 

is  obviously  superior. If the  trajectory  to  be  considered is the  curve 

DEGF  with G inside  the  atmosphere  then it i s   be t te r   to   use  DEG:kF 

since  the  portion  from E to F via G::: can  be  realized  without  fuel  con- 

sumption by using  atmospheric  braking at the  perigee  distance = R  

of the  orbit E . We can  notice  that  atmospheric  braking  is  used only 

in  the  direction of decreasing Q . 
If the  final  state  does  not  intersect  the  line p = R  Y 

using  atmospheric  braking  as  part of the  optimal  process,  the  last  corner 

F can  be  found by minimizing  the  last  impulse  (to go f rom F to K )  

subject  to  the  constraint 

If the  final  state  intersects  the  line ,d = R , F and K coincide  and 

the  last  impulse  is  infinitesimal,  just  enough  to  bring  the  perigee  distance 

of the  final  orbit  above  the  level R , thus  stopping  the  atmospheric 

braking. In this  case we can  see  that,  reaching  the  final  state  in  the 

quickest  time  (minimum  fuel  consumption  here),  is  the  same  as  optimally 

reaching  the  modified  final  state  which  is  composed of with 

16 



3 R and  the  line f I = R ,  a l a  Q ! ~  

3 . 5  The  Optimum  Modes 

The  optimal  trajectories  in  the ( , p ) plane  (with a>/ R )  

are  always of one of the  four  following  modes  (Fig. 5). 

I. The  "Hohmann  Mode" 

This  mode  generally  has  two  impulses  and  one  intermediary 

orbit 
ES 

with 

a s  = m a x  ( a  
0' 

B s  =[ p o  i f  %= a ,  

a I i f  a s =  a0 

, ) being  the  initial  and  final  points.  The 

switching  at ( (2 s ,  p s  ) is   ei ther of the DD type ( Q1 < Q! o ,  p I < ,& o) 

or of the AA type ( Q! I) Q , , >p o)  or  of one of the  two AD types. 

The  corner ES is   ei ther on the  switching or is  such  that E 1 i s   a t  

I 

one  end of the  final  state  when it is  constrained. 

We shall  see  that  sometimes  the.Hohmann  mode  degenerates  into 

a "one impulse at the  perigee"  mode ( ,& = ,8 I or a "one impluse 

at the  apogee  mode" ( a o =  (r I ) or a l 'parabolic  mode" ( Q , = + o o  1. 

17 
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II. The  "Biparabolic  Mode" 

There  exists  an  infinitesimal  impulse  at  infinity  to  transfer 

the  vehicle  from one parabola  to  the  other.  The  total  characteristic 

velocity  for  the  transfer  is 

III. The  "Parabolic Mode  with  Atmospheric  Braking" 

The  apogee of the  intermediary  orbit   is   theoretically  at  

infinity  and  the  total  characteristic  velocity  is 

The  corner E i s  found by minimizing  the  last  impulse  subject  to  the 

constraint 0 ( Q,,  PI, = 0. 

IV. The  "Two-Impulse Mode  with  Atmospheric  Braking'' 

This  mode of course  requires a ,  < CT . The  total 

characterist ic  velocity  is  

18 
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The  corner E is found by minimizing  the  last  impulse.  This  impulse 

is  infinitesimal i f  the  final  state  intersects  the  line = R  . 
S 

If ( a o ’  p o )  and ( CY , , /? , ) a r e  known, it is easy to 

compare  the  four  optimal  possibilities. For example we may  use  the 

following  conditions. 

The  mode I requires 

and 

The  mode I1 requires 

The  mode I11 requires 



P 

R 

c 

Fig .5 .  T h e  Opt imal  M o d e s .  

d 

Fig .  6 .  C h a n g e   i n   t h e   A p o g e e  . 
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3 

The  mode IV requires 

Q I  < Q o  

4. APPLICATIONS 

The  foregoing  analysis is applied  in  this  section  to  solve  several 

problems of orbit   corrections.  The  final  state  can  be a portion of a 

curve, a curve  with  infinite  branch  or a composite  curve. It is denoted 

by the  symbol . In the  first  three  examples  the  existence of a 

corner on a switching  curve  is  ruled out by using  the  separatrix  as  curve 

of comparison.  In  the  last two examples a corner  exists  for  certain  types 

of t ransfer .  

4. 1 Change in  the  Apogee 

Let d be  the  final  apogee  distance.  The  final  state  is a seg- 

ment of straight  line  parallel  to  the  -axis  (Fig. 6).  

= d >/ I , >  R 

2 1  



I3 Q < d the  optimum  mode  is  the  one-impulse  accelera- 0 

tive at the  perigee  (orbit 1). 

If a > d there  are  four  possible  optimal  trajectories 

a )  The  Hohrnann  type  bringing  the  vehicle  to  the  circular  orbit 

C of radius d . This  transfer  occurs only i f  > d (orbit 2) .  

b)  The  parabolic  mode  with  atmospheric  braking  (trajectory  from 

3 to  D).  This  mode  occurs  only  when 

c )  The  one-impulse  decelerative  at  the  perigee  (orbit  4).  This 

mode  occurs  only  when 

Q O  > d >  P o  
d )  The  two-impulse  mode  with  atmospheric  braking  (trajectory 

f rom 5 to D). 

4.2  Change  in  the  Perigee 

Let d be the  final  perigee  distance.  The  final  state  is a ray  

parallel  to  the a -axis (Fig.  7 )  

p, = > R  

> d the re   a r e  two  possible  trajectories 

22 
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a )  If po64d (ao+ d 1 / a the  optimum  mode is by  one- 

impulse  decelerative at the  apogee  (orbit 1). 

b) If the  inequality  reverses  the  optimum  mode is parabolic 

(orbit 2). 

If P o  < d there   are   three  possible   t ra jector ies  

a )  The  one-impulse  accelerative  at  the  apogee  (orbit 3 ) .  This 

mode is optimum  when 

Q o  >/ d 

2 2 
and d3a0-P~) -4aod(a6p&a6 3 Pd-4 d2(a0- pd >/ 0 

If p o  >/ 4 d/9  the  second  inequality  is  automatically  satisfied. 

b) The  Hohmann  transfer  (from 4 to C) .  This  mode  is  optimum 

when 

c )  The  parabolic  mode  (orbit 5 ) .  

4.3  Change  in  the  Eccentricity 

Let   e l  be  the  final  eccentricity.  The  final  state is a straight 

line (Fig.  8 )  

I - e, 
1 -  e ,  

P I =  k a  I t  k l  - 
- 

If e o  < e l  , the  optimum  mode is the  one-impulse  acceler- 

23 
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ative at the  perigee  (orbit 1 ) .  

Lf e > e there  are  four  possible  trajectories.  

a )  The  one-impulse  accelerative at the apogee  (orbit 2). This 

mode  occurs  only  when 
I 

where 

k o  = B o =  I - e ,  
a0 I -  eo 

b)  If the  inequality  reverses,  which  requires k o  < 0.3026 

( e > 0.53533)  the  optimum  mode  can  be  the  parabolic  mode  without 

atmospheric  braking  (since  has  infinite  branch)  or  parabolic  mode 

with  atmospheric  braking  (trajectory  from 3 to D ) .  

c )  The  two-impulse  mode  with  atmospheric  braking  (orbit 4 to D).  

The  second  impulse is infinitesimal.  This  mode  occurs  only  when 

4.4 Change  in  the  Major-Axis 

Let d be  the  final  major-axis.  The  final  state is  a segment of 

straight  line  (Fig. 9 )  
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Lf t p 0 < d , the  optimum  mode  is  the one -impuls e 

accelerative at the  perigee  (orbit  1). 

If a , +  
P O  

> d there  are  four  possible  trajectories.  

a )  The  two-impulse  mode  with  switching of the DD type  (orbit 2) .  

The  perigee  distance of the  intermediary  orbit   is  

- 3CZ0(10; d )  + 2 ao?/d(2ao+3d) 
B =  
‘ s  

9 a o +  d 

This  mode  occurs  only  when 

P o  > R  

The eq luality P o  = , written  without s 

the  equation of switching. 

iubscript 0 i s  

b)  The  one-impulse  decelerative at the  perigee  (orbit  3).  This 

mode  occurs  only  when 

c )  The  two-impulse  mode  with  atmospheric  braking  (orbit 4 and 

5 to  D).  The  second  impulse  is  infinitesimal. 

d)  The  parabolic  mode  with  atmospheric  braking  (orbit 6 to  D).  

26 



I- 

R 

0 

P 

R 

d 

0 

6 P 
L, 

I L 

" " 

~ ~~~ ~ ~ ~ ~~ 

d 

Fig.9.  Change i n  the   Major  - axis 

" _ "  

3 P 
7 

F i g . 1 0 .  Change  in  the  Angular  Momentum . 
27 

I 



I 

This  mode  occurs only when 

P O ’  

4 R  (Q,+R)  

a O  

(54) 

4 .5  Change in  the  Angular  Momentum 

This  is  the  same  as  changing  the  semi  latus-rectum.  Let 2 d 

be  the  final  value of the  semi  latus-rectum.  The  final  state  is a branch 

of hyperbola  (Fig.  10) 

If the  initial  angular  momentum  is  larger  than  the  final  angular 

momentum,  that  is i f  

there  are  four  possible  modes.  

a )  The  one-impulse  decelerative at the  apogee  (orbit 1 ) .  

b)  The  two-impulse  mode  with  atmospheric  braking  (orbit 2 to  D) .  

This  mode  occurs  and  is  optimum  when 
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r-- 

d < R ( 2 d  

R d  

and 

19. 4 R (ao+ R )  

a0 

c )  The  parabolic  mode  with  atmospheric  braking  (orbit 3 to D). 

This  mode  occurs  only  when 

d < R ( 2 d  

and 

p o>/ 
4 R (ao+ R ) 

d)  The  parabolic  mode  without  atmospheric  braking.  This  mode 

occurs and is optimum  when 

R 7 d  

and (59)  

W e  can  notice  that  in  the  case  where  inequality (56)  and  the  first 

of the  inequalities (57) are  verified,  the  strategy is to  go in  an  optimum 
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way  from  the  initial  orbit  to  the  final  state  represented  by  the  composite 

curve C D F  . 
If inequality (56) reverses ,   that  is if the  initial  angular  momentum 

is  less  than  the  f inal   angular  momentum  there  are  three  possible  modes,  

none of them  involving  atmospheric  braking. 

a )  The  two-impulse  mode  with  switching  (orbit 4). This  mode 

occurs,  and is  optimum  when 

and 

4 

9 B O  
> -  d 

s ( a0,p,, - - (9p 0 - 4 d ) a 3 + 6 p  0 0 0  ($-2d)a2+/3 0 0 0  2(/¶ -12d)Q 0 -4P,"d \< 0 

The  equality  written  without  subscript 0 is  the  equation of the 

switching.  The  apogee  distance of the  intermediary  orbit  is  obtained by 

b)  When s ( a , 14 ) >/ 0 the  optimum  mode  is by one 

accelerative  impulse at the  apogee  (orbit 5). 

c )  The  parabolic  mode  (orbit 6) .  This  mode  occurs  and  is  optimum 

when 

R < p o  4 d  
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5 .  CONCLUSION 

This  paper  presents  the  complete  analytical  solutions of several  

fundamental  problems  in  orbital  corrections.  The  initial  state is a given 

point  in  the  phase  space  while  the  terminal  state  is a segment of a curve, 

a branch of a curve  or a composite  curve.  The  possible  use of atmospheric 

braking is discussed,  and by modifying  the  final  state  to  include  the  line 

= R , the  problem  again  can  be  solved by the  same  method.  The 

selection of the  apogee  and  perigee  distances as  state  variables  gives a 

symmetric  form  to  the  problem  and  results  in a linear  differential  equa- 

tion of the  first  order  for  the  ratio of the  adjoint  variables. 

The  applications of the  solution  derived  in  this  paper  are  not 

restricted  to  the  examples  which  have  been  selected.  The  solution  can 

be  applied  to  the  problem of optimum  disorbit  (Ref. 3 ) ,  optimum  ascent 

into  an  orbit  (Ref. 4 )  or  optimum  orbit  correction  involving  more  than two 

orbital  elements  (Ref. 5 ) .  
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